In many manufacturing processes there is a need to measure cut-to-length materials. There is a wide assortment of devices designed to provide precision and repeatability in various high-speed cut-to-length operations. With many of these systems, the movement of the uncut piece is measured with a pulse-counting encoder attached to a driven roll or conveyor belt. When the required number of pulses have passed the knife or saw device, the cutter is activated and the product is cut to the desired length. In these other systems a through-beam photo sensor is triggered by the advancing product and the cutter is activated to cut the product to the target length.

There are many variables that can affect the precision of these other cut-to-length solutions. The material may slip, stretch or compress on the conveyor belt or drive roller. The cutter may have delays that vary with the type of material being cut. The actual mechanical positioning may require moving the sensors for varying sizes of material. Sensors may also become contaminated or attenuated and cause unacceptable errors in finished product.

- **Linearity of 0.050 inch [1.27mm] @ 2 sigma**
- **Line Speeds Vary with Sensor Selection**
- **Patented Scanned LED Technology with NO MOVING PARTS**
- **Solid State Reliability**
- **No Light Sources to Replace**
- **Upper/Lower Limit Relays**
- **Multiple Analog Outputs Available**
- **Serial I/O for Data Output to Computer, Data Logger or Printer (optional)**
- **LCD Touchscreen Customer Interface**

© Copyright 2001 Harris Instrument Corporation. All Rights Reserved. SCAN-A-LINE™ is registered with the U.S. Patent and Trademark Office by Harris Instrument Corporation. All other product names are the trademarks of their respective companies. Information in this material is subject to change without notice.